Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
J Neurosci ; 44(19)2024 May 08.
Article En | MEDLINE | ID: mdl-38575342

The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.


Hippocampus , Intellectual Disability , Jumonji Domain-Containing Histone Demethylases , Memory Consolidation , Memory, Long-Term , Animals , Hippocampus/metabolism , Mice , Male , Female , Intellectual Disability/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Memory Consolidation/physiology , Memory, Long-Term/physiology , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Mice, Inbred C57BL , DNA-Binding Proteins
2.
Genet Med ; 25(2): 100332, 2023 02.
Article En | MEDLINE | ID: mdl-36520152

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Movement Disorders , Neurodevelopmental Disorders , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , HEK293 Cells , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Neurodevelopmental Disorders/genetics
3.
J Am Heart Assoc ; 11(23): e026494, 2022 12 06.
Article En | MEDLINE | ID: mdl-36444867

Background Integrin α7ß1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7ß1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7ß1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7ß1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.


Heart Diseases , Muscular Diseases , Child , Humans , Adult , Mice , Animals , Family
5.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Article En | MEDLINE | ID: mdl-33742325

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Chromosomes, Human, Pair 2/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Ribosomal Proteins/genetics , Uniparental Disomy/genetics , Adolescent , Base Sequence , Brain/diagnostic imaging , Brain/pathology , Child, Preschool , Female , Fibroblasts/pathology , Homozygote , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mitochondrial Diseases/pathology , Muscle, Skeletal/metabolism , Mutation/genetics , Oxidative Phosphorylation , Protein Biosynthesis , Young Adult
6.
Int J Cardiol ; 307: 101-108, 2020 05 15.
Article En | MEDLINE | ID: mdl-31627847

BACKGROUND: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the disease mechanism at a molecular level. METHODS: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology and immunohistochemistry. RESULTS: Novel or rare FLNC variants, four null and five variants of unknown significance, were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family members, n = 16) Task Force diagnostic electrocardiogram repolarization/depolarization abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had >500 ventricular ectopics/24 h or ventricular tachycardia on Holter and 67% had late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein distribution, distinctive from that observed in ARVC, predominantly in the left ventricle. CONCLUSIONS: ACM associated with FLNC variants presents with a distinctive phenotype characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the molecular level, the pathogenic mechanism related to FLNC appears different to classic forms of ARVC caused by desmosomal mutations.


Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Filamins , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Arrhythmogenic Right Ventricular Dysplasia/genetics , Contrast Media , Filamins/genetics , Gadolinium , Humans , Mutation , Phenotype
7.
Neuromuscul Disord ; 29(10): 747-757, 2019 10.
Article En | MEDLINE | ID: mdl-31561939

Diagnosis of inherited myopathies can be a challenging and lengthy process due to broad genetic and phenotypic heterogeneity. In this study we applied focused exome sequencing to investigate a cohort of 100 complex adult myopathy cases who remained undiagnosed despite extensive investigation. We evaluated the frequency of genetic diagnoses, clinical and pathological factors most likely to be associated with a positive diagnosis, clinical pitfalls and new phenotypic insights that could help to guide future clinical practice. We identified pathogenic/likely pathogenic variants in 32/100 cases. TTN-related myopathy was the most common diagnosis (4/32 cases) but the majority of positive diagnoses related to a single gene each. Childhood onset of symptoms was more likely to be associated with a positive diagnosis. Atypical and new clinico-pathological phenotypes with diagnostic pitfalls were identified. These include the new emerging group of neuromyopathy genes (HSPB1, BICD2) and atypical biopsy findings: COL6A-related myopathy with mitochondrial features, DOK7 presenting as myopathy with minicores and DES-related myopathy without myofibrillar pathology. Our data demonstrates the diagnostic efficacy of broad NGS screening when combined with detailed clinico-pathological phenotyping in a complex neuromuscular cohort. Atypical clinico-pathological features may delay the diagnostic process if smaller targeted gene panels are used.


Muscle Proteins/genetics , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Phenotype , Adult , Aged , Aged, 80 and over , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged
8.
Brain ; 142(9): 2828-2844, 2019 09 01.
Article En | MEDLINE | ID: mdl-31324919

Our objective was to define the prevalence and clinical features of genetic Parkinson's disease in a large UK population-based cohort, the largest multicentre prospective clinico-genetic incident study in the world. We collected demographic data, Movement Disorder Society Unified Parkinson's Disease Rating Scale scores, and Montreal Cognitive Assessment scores. We analysed mutations in PRKN (parkin), PINK1, LRRK2 and SNCA in relation to age at symptom onset, family history and clinical features. Of the 2262 participants recruited to the Tracking Parkinson's study, 424 had young-onset Parkinson's disease (age at onset ≤ 50) and 1799 had late onset Parkinson's disease. A range of methods were used to genotype 2005 patients: 302 young-onset patients were fully genotyped with multiplex ligation-dependent probe amplification and either Sanger and/or exome sequencing; and 1701 late-onset patients were genotyped with the LRRK2 'Kompetitive' allele-specific polymerase chain reaction assay and/or exome sequencing (two patients had missing age at onset). We identified 29 (1.4%) patients carrying pathogenic mutations. Eighteen patients carried the G2019S or R1441C mutations in LRRK2, and one patient carried a heterozygous duplication in SNCA. In PRKN, we identified patients carrying deletions of exons 1, 4 and 5, and P113Xfs, R275W, G430D and R33X. In PINK1, two patients carried deletions in exon 1 and 5, and the W90Xfs point mutation. Eighteen per cent of patients with age at onset ≤30 and 7.4% of patients from large dominant families carried pathogenic Mendelian gene mutations. Of all young-onset patients, 10 (3.3%) carried biallelic mutations in PRKN or PINK1. Across the whole cohort, 18 patients (0.9%) carried pathogenic LRRK2 mutations and one (0.05%) carried an SNCA duplication. There is a significant burden of LRRK2 G2019S in patients with both apparently sporadic and familial disease. In young-onset patients, dominant and recessive mutations were equally common. There were no differences in clinical features between LRRK2 carriers and non-carriers. However, we did find that PRKN and PINK1 mutation carriers have distinctive clinical features compared to young-onset non-carriers, with more postural symptoms at diagnosis and less cognitive impairment, after adjusting for age and disease duration. This supports the idea that there is a distinct clinical profile of PRKN and PINK1-related Parkinson's disease. We estimate that there are approaching 1000 patients with a known genetic aetiology in the UK Parkinson's disease population. A small but significant number of patients carry causal variants in LRRK2, SNCA, PRKN and PINK1 that could potentially be targeted by new therapies, such as LRRK2 inhibitors.


Mendelian Randomization Analysis/methods , Mutation/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Population Surveillance/methods , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Genetic Testing/methods , Genotype , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Prospective Studies , United Kingdom/epidemiology
9.
J Clin Med ; 8(7)2019 07 08.
Article En | MEDLINE | ID: mdl-31288420

TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases.

10.
Neurol Genet ; 5(2): e322, 2019 Apr.
Article En | MEDLINE | ID: mdl-31119193

OBJECTIVE: To characterize the phenotype in individuals with OPA3-related autosomal dominant optic atrophy and cataract (ADOAC) and peripheral neuropathy (PN). METHODS: Two probands with multiple affected relatives and one sporadic case were referred for evaluation of a PN. Their phenotype was determined by clinical ± neurophysiological assessment. Neuropathologic examination of sural nerve and skeletal muscle, and ultrastructural analysis of mitochondria in fibroblasts were performed in one case. Exome sequencing was performed in the probands. RESULTS: The main clinical features in one family (n = 7 affected individuals) and one sporadic case were early-onset cataracts (n = 7), symptoms of gastrointestinal dysmotility (n = 8), and possible/confirmed PN (n = 7). Impaired vision was an early-onset feature in another family (n = 4 affected individuals), in which 3 members had symptoms of gastrointestinal dysmotility and 2 developed PN and cataracts. The less common features among all individuals included symptoms/signs of autonomic dysfunction (n = 3), hearing loss (n = 3), and recurrent pancreatitis (n = 1). In 5 individuals, the neuropathy was axonal and clinically asymptomatic (n = 1), sensory-predominant (n = 2), or motor and sensory (n = 2). In one patient, nerve biopsy revealed a loss of large and small myelinated fibers. In fibroblasts, mitochondria were frequently enlarged with slightly fragmented cristae. The exome sequencing identified OPA3 variants in all probands: a novel variant (c.23T>C) and the known mutation (c.313C>G) in OPA3. CONCLUSIONS: A syndromic form of ADOAC (ADOAC+), in which axonal neuropathy may be a major feature, is described. OPA3 mutations should be included in the differential diagnosis of complex inherited PN, even in the absence of clinically apparent optic atrophy.

11.
JAMA Neurol ; 75(11): 1416-1422, 2018 11 01.
Article En | MEDLINE | ID: mdl-30039155

Importance: Pathogenic variants in LRRK2 are a relatively common genetic cause of Parkinson disease (PD). Currently, the molecular mechanism underlying disease is unknown, and gain and loss of function (LOF) models of pathogenesis have been postulated. LRRK2 variants are reported to result in enhanced phosphorylation of substrates and increased cell death. However, the double knockout of Lrrk2 and its homologue Lrrk1 results in neurodegeneration in a mouse model, suggesting that disease may occur by LOF. Because LRRK2 inhibitors are currently in development as potential disease-modifying treatments in PD, it is critical to determine whether LOF variants in LRRK2 increase or decrease the risk of PD. Objective: To determine whether LRRK1 and LRRK2 LOF variants contribute to the risk of developing PD. Design, Setting, and Participants: To determine the prevailing mechanism of LRRK2-mediated disease in human populations, next-generation sequencing data from a large case-control cohort (>23 000 individuals) was analyzed for LOF variants in LRRK1 and LRRK2. Data were generated at 5 different sites and 5 different data sets, including cases with clinically diagnosed PD and neurologically normal control individuals. Data were collected from 2012 through 2017. Main Outcomes and Measures: Frequencies of LRRK1 and LRRK2 LOF variants present in the general population and compared between cases and controls. Results: Among 11 095 cases with PD and 12 615 controls, LRRK1 LOF variants were identified in 0.205% of cases and 0.139% of controls (odds ratio, 1.48; SE, 0.571; 95% CI, 0.45-4.44; P = .49) and LRRK2 LOF variants were found in 0.117% of cases and 0.087% of controls (odds ratio, 1.48; SE, 0.431; 95% CI, 0.63-3.50; P = .36). All association tests suggested lack of association between LRRK1 or LRRK2 variants and PD. Further analysis of lymphoblastoid cell lines from several heterozygous LOF variant carriers found that, as expected, LRRK2 protein levels are reduced by approximately half compared with wild-type alleles. Conclusions and Relevance: Together these findings indicate that haploinsufficiency of LRRK1 or LRRK2 is neither a cause of nor protective against PD. Furthermore, these results suggest that kinase inhibition or allele-specific targeting of mutant LRRK2 remain viable therapeutic strategies in PD.


High-Throughput Nucleotide Sequencing/methods , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Sequence Analysis, DNA/methods , Case-Control Studies , Cohort Studies , Humans , Loss of Function Mutation , Protein Serine-Threonine Kinases/genetics , Exome Sequencing/methods
12.
Neurobiol Aging ; 64: 159.e5-159.e8, 2018 04.
Article En | MEDLINE | ID: mdl-29398121

SNCA missense mutations are a rare cause of autosomal dominant Parkinson's disease (PD). To date, 6 missense mutations in SNCA have been nominated as causal. Here, we assess the frequency of these 6 mutations in public population databases and PD case-control data sets to determine their true pathogenicity. We found that 1 of the 6 reported SNCA mutations, His50Gln, was consistently identified in large population databases, and no enrichment was evident in PD cases compared to controls. These results suggest that His50Gln is probably not a pathogenic variant. This information is important to provide counseling for His50Gln carriers and has implications for the interpretation of His50Gln α-synuclein functional investigations.


Genetic Association Studies , Mutation, Missense , Parkinson Disease/genetics , alpha-Synuclein/genetics , Databases, Genetic , Datasets as Topic , Female , Genes, Dominant/genetics , Genetic Counseling , Heterozygote , Humans , Male , Parkinson Disease/etiology
13.
Orphanet J Rare Dis ; 12(1): 172, 2017 11 02.
Article En | MEDLINE | ID: mdl-29096665

BACKGROUND: Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare neurodevelopmental disorder reported for only a few patients. METHODS: We investigated a Greek HSP family using whole exome sequencing (WES). RESULTS: A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all three affected siblings in the compound heterozygous state (p.V174fs and p.C319R); the unaffected parents were carriers of only one variant. Patients were affected with a combination of: (a) febrile seizures with onset in the first year of life (followed by epileptic non-febrile seizures); (b) distinctive facial appearance (e.g., coarse features, bulbous nose and hypomimia); (c) developmental delay and intellectual disability; (d) early-onset spastic weakness of the lower limbs; and (e) cerebellar hypoplasia/atrophy on brain MRI. CONCLUSIONS: We review genotype-phenotype correlations and discuss clinical overlaps between different AP4-related diseases. The AP4M1 belongs to a complex that mediates vesicle trafficking of glutamate receptors, being likely involved in brain development and neurotransmission.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Genetic Association Studies/methods , Spastic Paraplegia, Hereditary/diagnostic imaging , Spastic Paraplegia, Hereditary/genetics , DNA-Binding Proteins , Female , Humans , Male , Mutation/genetics , Pedigree , RNA-Binding Proteins
15.
PLoS One ; 12(7): e0180467, 2017.
Article En | MEDLINE | ID: mdl-28683077

Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.


Brain Chemistry , Cell Nucleus/chemistry , DNA Copy Number Variations , DNA, Mitochondrial/isolation & purification , Genome, Human , Polymerase Chain Reaction/standards , Aged , Aged, 80 and over , Autopsy , Base Composition , Case-Control Studies , Cell Nucleus/metabolism , Cerebellum/chemistry , Cerebellum/metabolism , Comparative Genomic Hybridization , DNA, Mitochondrial/genetics , Female , Frontal Lobe/chemistry , Frontal Lobe/metabolism , High-Throughput Nucleotide Sequencing , Humans , Male , Microarray Analysis , Middle Aged , Mitochondria/chemistry , Mitochondria/metabolism , Oligonucleotide Array Sequence Analysis , Parkinson Disease/metabolism , Parkinson Disease/pathology , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Substantia Nigra/chemistry , Substantia Nigra/metabolism
16.
Neurol Genet ; 3(3): e149, 2017 Jun.
Article En | MEDLINE | ID: mdl-28508084

OBJECTIVE: Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. METHODS: RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. RESULTS: Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. CONCLUSIONS: In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation.

17.
Hum Mol Genet ; 25(24): 5483-5489, 2016 12 15.
Article En | MEDLINE | ID: mdl-27798102

Oligogenic inheritance implies a role for several genetic factors in disease etiology. We studied oligogenic inheritance in Parkinson's (PD) by assessing the potential burden of additional rare variants in established Mendelian genes and/or GBA, in individuals with and without a primary pathogenic genetic cause in two large independent cohorts totaling 7,900 PD cases and 6,166 controls. An excess (≥30%) of cases with a recognised primary genetic cause had ≥1 additional rare variants in Mendelian PD genes, as compared with no known mutation PD cases (17%) and unaffected controls (16%), supporting our hypothesis. Carriers of additional Mendelian gene variants have younger ages at onset (AAO). The effect of additional Mendelian variants in LRRK2 G2019S mutation carriers, of which ATP13A2 variation is particularly common, may account for some of the variation in penetrance. About 10% of No Known Mutation-PD cases harbour a rare GBA variant compared to known pathogenic mutation PD cases (8%) and controls (5%), with carriers having earlier AAOs. Together, the data suggest that the oligogenic inheritance of rare Mendelian variants may be important in patient with a primary pathogenic cause, whereas GBA increases risk across all forms of PD. This study highlights the potential genetic complexity of Mendelian PD. The identification of potential modifying variants provides new insights into disease mechanisms by potentially separating relevant from benign variants and by the interaction between genes in specific pathways. In the future this may be relevant to genetic testing and counselling of patients with PD and their families.


Genetic Predisposition to Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Multifactorial Inheritance/genetics , Parkinson Disease/genetics , Age of Onset , Female , Genotype , Humans , Male , Mutation , Parkinson Disease/pathology , Risk Factors
18.
Neurobiol Aging ; 47: 218.e1-218.e9, 2016 11.
Article En | MEDLINE | ID: mdl-27594680

Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders.


Adenosine Triphosphatases/genetics , Cell Cycle Proteins/genetics , Genetic Association Studies , Genetic Variation/genetics , Myositis, Inclusion Body/genetics , Sequestosome-1 Protein/genetics , Aged , Aged, 80 and over , Genetic Predisposition to Disease , Humans , Middle Aged , Risk , Valosin Containing Protein
19.
Am J Hum Genet ; 98(4): 763-71, 2016 Apr 07.
Article En | MEDLINE | ID: mdl-27058447

Chorea is a hyperkinetic movement disorder resulting from dysfunction of striatal medium spiny neurons (MSNs), which form the main output projections from the basal ganglia. Here, we used whole-exome sequencing to unravel the underlying genetic cause in three unrelated individuals with a very similar and unique clinical presentation of childhood-onset chorea and characteristic brain MRI showing symmetrical bilateral striatal lesions. All individuals were identified to carry a de novo heterozygous mutation in PDE10A (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C [p.Phe334Leu] in one individual), encoding a phosphodiesterase highly and selectively present in MSNs. PDE10A contributes to the regulation of the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both substitutions affect highly conserved amino acids located in the regulatory GAF-B domain, which, by binding to cAMP, stimulates the activity of the PDE10A catalytic domain. In silico modeling showed that the altered residues are located deep in the binding pocket, where they are likely to alter cAMP binding properties. In vitro functional studies showed that neither substitution affects the basal PDE10A activity, but they severely disrupt the stimulatory effect mediated by cAMP binding to the GAF-B domain. The identification of PDE10A mutations as a cause of chorea further motivates the study of cAMP signaling in MSNs and highlights the crucial role of striatal cAMP signaling in the regulation of basal ganglia circuitry. Pharmacological modulation of this pathway could offer promising etiologically targeted treatments for chorea and other hyperkinetic movement disorders.


Chorea/genetics , Corpus Striatum/pathology , Mutation , Phosphoric Diester Hydrolases/genetics , Amino Acid Sequence , Animals , Child , Chorea/diagnosis , Corpus Striatum/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Female , Humans , Magnetic Resonance Imaging , Male , Mice , Middle Aged , Molecular Sequence Data , Pedigree , Protein Conformation , Sequence Alignment , Signal Transduction , Young Adult
20.
Neurobiol Aging ; 37: 210.e1-210.e5, 2016 Jan.
Article En | MEDLINE | ID: mdl-26518746

To date, a large spectrum of genetic variants has been related to familial and sporadic Parkinson's disease (PD) in diverse populations worldwide. However, very little is known about the genetic landscape of PD in Southern Spain, despite its particular genetic landscape coming from multiple historical migrations. We included 134 PD patients in this study, of which 97 individuals were diagnosed with late-onset sporadic PD (LOPD), 28 with early-onset sporadic PD (EOPD), and 9 with familial PD (FPD). Genetic analysis was performed through a next-generation sequencing panel to screen 8 PD-related genes (LRRK2, SNCA, PARKIN, PINK1, DJ-1, VPS35, GBA, and GCH1) in EOPD and FPD groups and direct Sanger sequencing of GBA exons 8-11 and LRRK2 exons 31 and 41 in the LOPD group. In the EOPD and FPD groups, we identified 11 known pathogenic mutations among 15 patients (40.5%). GBA (E326K, N370S, D409H, L444P) mutations were identified in 7 patients (18.9%); LRRK2 (p.R1441G and p.G2019S) in 3 patients (8.1%); biallelic PARK2 mutations (p.N52fs, p.V56E, p.C212Y) in 4 cases (10.8%) and PINK1 homozygous p.G309D in 1 patient (2.7%). An EOPD patient carried a single PARK2 heterozygous mutation (p.R402C), and another had a novel heterozygous mutation in VPS35 (p.R32S), both of unknown significance. Moreover, pathogenic mutations in GBA (E326K, T369M, N370S, D409H, L444P) and LRRK2 (p.R1441G and p.G2019S) were identified in 13 patients (13.4%) and 4 patients (4.1%), respectively, in the LOPD group. A large number of known pathogenic mutations related to PD have been identified. In particular, GBA and LRRK2 mutations appear to be considerably frequent in our population, suggesting a strong Jewish influence. Further research is needed to study the contribution of the novel found mutation p.R32S in VPS35 to the pathogenesis of PD.


Genetic Association Studies , Mutation , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/genetics , Vesicular Transport Proteins/genetics , beta-Glucosidase/genetics , Aged , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Protein Kinases/genetics , Spain , Ubiquitin-Protein Ligases/genetics , alpha-Synuclein/genetics
...